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 JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS VOL. 31, NO. 1, MARCH 1996

 Another Look at Models of the Short-Term Interest
 Rate

 Robin J. Brenner, Richard H. Harjes, and Kenneth F. Kroner*

 Abstract

 The short-term rate of interest is fundamental to much of theoretical and empirical finance,
 yet no consensus has emerged on the dynamics of its volatility. We show that models which
 parameterize volatility only as a function of interest rate levels tend to over emphasize the
 sensitivity of volatility to levels and fail to model adequately the serial correlation in condi?
 tional variances. On the other hand, serial correlation based models like GARCH models
 fail to capture adequately the relationship between interest rate levels and volatility. We in-
 troduce and test a new class of models for the dynamics of short-term interest rate volatility,
 which allows volatility to depend on both interest rate levels and information shocks. Two
 important conclusions emerge. First, the sensitivity of interest rate volatility to interest rate
 levels has been overstated in the literature. While this relationship is important, adequately
 modeling volatility as a function of unexpected information shocks is also important. Sec?
 ond, we conclude that the volatility processes in many existing theoretical models of interest
 rates are misspecified, and suggest new paths toward improving the theory.

 I. Introduction

 The short-term riskless rate of interest (r) is fundamental to much of theo?
 retical and empirical finance. Yet no consensus has emerged on the dynamics of
 either the level or the volatility of the interest rate. In this paper, we compare
 and evaluate two popular classes of empirical models for short-term interest rate
 volatility, and propose an alternative class that overcomes some of the empirical
 weaknesses of the existing classes.

 The first models we evaluate belong to the class of continuous time models
 in which volatility is parameterized only as a function of interest rate levels. We
 will refer to these as LEVELS models. Several continuous time models, such
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 as Merton (1973), Brennan and Schwartz (1980), and Cox, Ingersoll, and Ross
 (1985), are examples of LEVELS models. The seco-nd class of models we evaluate,
 the GARCH models, parameterizes volatility only as a function of unexpected
 shocks to the interest rate market. In these models, originally proposed by Engle
 (1982) and Bollerslev (1986), volatility is not a function of interest rate levels.
 In this paper, we discuss some of the weaknesses of both LEVELS and GARCH
 models ofthe short-term interest rate, and propose a new class of models that treats

 volatility as a function of both the interest rate level and unexpected interest rate
 shocks.

 Which ofthe three classes of models best captures the dynamics of short-term
 rates is important for several reasons. To illustrate, the short rate is often used as a

 proxy for the latent state variable, driving the changes in the entire term structure.
 This makes the choice of a model for short-term rates crucial to pricing bonds,
 pricing interest rate derivatives, and hedging interest rate risk. For example, to
 price long-dated derivatives such as swaps, swaptions, or embedded bond options
 correctly, we need to model both the instantaneous and time series properties of
 interest rate volatility. This follows because both the current level of volatility
 and the stochastic properties of volatility will affect dynamic hedge ratios and
 the distribution of future interest rate levels, which determine a derivative's price.
 The use of an incorrect model could lead to incorrect inferences, mishedged or
 unhedged risks, or pricing errors.

 We demonstrate that if both interest rate levels and unexpected shocks are
 allowed to affect volatility, the sensitivity of volatility to levels diminishes sub?
 stantially. Therefore, we conclude that the extreme sensitivity of volatility to levels
 found in the existing literature is a result of model misspecification. We also show
 that our proposed models perform much better statistically than either the LEVELS
 or the GARCH models. These results call into question the validity of existing em?
 pirical modeling techniques for the short-term interest rate, and suggest a strategy
 for developing a new generation of models.

 The rest ofthe paper is organized as follows. Section II reviews the two classes
 of models that we consider and introduces our proposed empirical generalization.
 Section III discusses the robust conditional moment test statistics used in this

 paper. Section IV describes the data, and Section V presents our results. Section
 VI concludes.

 II. Models of Short-Term Interest Rates

 A. Two Existing Classes of Volatility Models

 To analyze the variety of models for the short rate and its volatility, Chan,
 Karolyi, Longstaff, and Sanders (1992) (hereafter CKLS), uses a generalized con?
 tinuous time short rate specification,

 (1) dr = (a + pr)dt + ipr^dW,

 where r is the interest rate level, t is time, W is a Brownian motion, and a, (3,
 tp, and 7 are parameters. CKLS shows that with appropriate restrictions on a, (3,
 and 7, many popular interest rate models can be obtained. For example, setting
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 7 = Vi gives the Cox, Ingersoll, and Ross (1985) square root model, and setting
 a = 0 gives the Cox (1975) constant elasticity of variance model. In these models,
 a + pr is the drift and ip2r2/y is the variance of unexpected interest rate changes.
 Also, rewriting a + Pr as p(r ? a*) reveals that p can be viewed as a measure
 of the speed of mean reversion in rate levels. The more negative /? is, the faster
 r responds to deviations from a*. The volatility parameter, tp2, is simply a scale
 factor for the variance of unexpected interest rate changes. If tp2 doubles, then the
 variance doubles. We will argue that allowing ip2 to be a time-varying function of
 the information set results in models that perform better than the existing models.
 The parameter 7 allows the volatility of interest rates to depend on the level of the
 interest rate. At higher 7s, the volatility is more sensitive to interest rate levels.

 Following the lead of Marsh and Rosenfeld (1983) (hereafter MR), CKLS
 and Dietrich-Campbell and Schwartz (1986), we consider the following Euler-
 Maruyama discrete time approximation to the continuous time model (l),1

 (2) r,-r,_i = a + /3r,_i+e?

 E (?,13,-0 = 0. E(c?|9f,_0 = cj] = ^r] 2 27
 ? l-

 In (2), 3?f_i is the information set at time t?\, and a2 is the (conditional) variance
 of interest rate changes. In this model, heteroskedasticity enters solely through the

 squared level of the interest rate. We therefore refer to this empirical model as the
 LEVELS model. A significant contribution of CKLS was the finding that, for one-
 month Treasury bill yields, the best models for capturing the dynamics ofthe short
 rate allow the volatility of unexpected interest rate changes to depend positively
 on the rate level (i.e., 7 > 0). CKLS estimated 7 to be about 1.50 in the LEVELS
 model, and demonstrated that models with 7 > 1 outperformed those with 7 < 1.
 MR also estimated a flexible functional form that nests several different interest

 rate models. MR's best models had 7 = 1, but they did not examine models with
 7 > 1.

 The link between volatility and interest rate levels seems intuitive. As levels
 increase, we would expect volatility to also increase, if only for scale reasons.
 Thus, models in which short rate volatility is sensitive to the level of interest rates
 (i.e., models with 7 > 0) should perform well. However, 7 = 1.00 or 7 = 1.50
 implies an unreasonable sensitivity of volatility to levels. For example, in several
 historical periods (such as 1983-1984), rates were high but stable, and in several
 periods (such as late 1992 and early 1993), rates were low but volatility was high.
 The LEVELS model also suffers from other problems. For example, the estimated
 relationship between volatility and levels is sensitive to whether the October 1987
 crash observation is included in the dataset (Bliss and Smith (1994)). It is also
 sensitive to shifts in the Fed's operating procedures (Ball and Torous (1994)).

 1 While other more sophisticated and perhaps more accurate approximations are available, the Euler-
 Maruyama approximation is the simplest and most straightforward. Furthermore, other approximations
 would not allow us to nest the models considered by MR, CKLS, and Dietrich-Campbell and Schwartz
 (1986) inside our flexible functional form, which is a key aspect of our paper. To minimize the possible
 deficiencies of this simple approximation, we use relatively high frequency (weekly and monthly) data
 in our study. Lower frequencies, such as quarterly, are probably less appropriate for this approximation.
 For a discussion of Euler-Maruyama discrete time approximations, their convergence to the continuous
 time process, and other types of discrete time approximations, see Kloeden and Platen (1992).
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 Perhaps the strongest criticism ofthe LEVELS model is that it restricts volatil?
 ity to be a function of interest rate levels only, and not of the news arrival process.
 An alternative model that addresses this is the GARCH model, in which this pe?
 riod's volatility is a function of last period's unexpected news. For example, in a
 GARCH( 1,1) model,

 a2 = a0 + a\e2_l + ba2t_x,

 where e,_i is the unexpected shock to r. See Engle, Lilien, and Robins (1987)
 and Evans (1989) for applications of this model to interest rate data, or Bollerslev,
 Chou, and Kroner (1992) for a comprehensive survey.

 At least three problems arise when using GARCH to model short-term interest
 rate volatility. For example, in direct contrast to much ofthe theoretical literature,
 GARCH models do not permit volatility to be a function of interest rate levels.
 Also, most empirical applications to interest rates find that a\ + b ? 1. This
 implies that current shocks affect volatility forecasts infinitely far into the future,
 i.e., volatility shocks persist forever. Finally, GARCH models permit negative
 interest rates.

 B. An Alternative Class of Volatility Models

 As indicated above, both LEVELS models and GARCH models have im?
 portant weaknesses. Specifically, in LEVELS models with 7 > 0, increases in
 interest rates necessarily lead to increased volatility, while decreases in interest
 rates necessarily lead to decreased volatility. On the other hand, in GARCH mod?
 els, interest rate levels have no direct impact on volatility. These implications are
 unrealistic, but they are easy to address by allowing variance to be a function of
 both the level ofthe interest rate and unexpected shocks to the interest rate market.

 We now propose several models that permit this.
 Consider, for example, the generalization of (2) obtained by allowing the

 coefficient ip2 to vary through time as new information arrives. An attractive
 candidate for the information variable is last period's forecast error, which can
 be viewed as unexpected news. For simplicity, we assume that xfi follows an
 autoregressive-type process. In particular, we suppose

 (3) i>] = ao + a^+btp2^,

 where e,_i is the residual from (2) and ao, a\, and b are positive.2 In this model,
 large interest rate shocks (as measured by large residuals) cause increases in rate
 volatility through their effect on tp2. Using (3) to generalize (2), we propose the
 following discrete time flexible functional form,

 (4) rt-rt_x = a + (3rt_x+ct,

 E (?,13,-0 = 0. E(c?|3,_i) = a2 = tffa,
 tp? = ao + ax?2t_x+bilj2_x.

 2Gagnon, Morgan, and Neave (1993) suggests replacing the information variable e2t_x with zj =

 use
 _l/o-f_,m equation (3). Experimentation revealed that our results are not sensitive to whether we
 ;e e? or zt as the information variable. -t ^ H
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 This model has several interesting features. For example, the sensitivity of
 volatility to levels is a function of information flows. Specifically, it is higher during

 high-information periods (when the shocks e, are larger in absolute magnitude) than

 during stable periods. Whether this property is good or bad is an empirical issue.
 Also, the specification in (4) nests both the LEVELS model and the GARCH model.
 Specifically, if a\ = b = 0, then the time variation in tpt disappears and we are
 back to the LEVELS model. In contrast, if 7 = 0, then the levels effect disappears
 and we are back in the GARCH framework. This is convenient econometrically
 because it makes model comparisons straightforward. Finally, as mentioned above,
 this model can be interpreted as a time-varying parameter version of the LEVELS
 model. We therefore refer to this model as the TVP-LEVELS model.3

 A potential weakness of the TVP-LEVELS model is the implication that
 positive and negative shocks have the same impact on volatility. This weakness is
 easily addressed by replacing equation (3) in the TVP-LEVELS model with

 (5) ift = a0 + ax e2_ x + a2r)2_} + btpf_},
 where 77,-1 = min(e,_i,0). In (5), if a2 > 0, then bad news (negative shocks) has
 a larger impact on volatility than good news (positive shocks). We refer to this
 model as the AsymTVP model.

 These time-varying parameter models demonstrate one way to allow volatility
 to depend on both levels and information. An alternative method is to add a levels
 term directly to the GARCH(1,1) model, giving

 (6) 0} - a0 + a\ e2_ x + ba2_ j + a3 r]\.
 In this model, which we refer to as the GARCH-X model, volatility depends
 on information flows, while the sensitivity of volatility to levels does not. This
 contrasts with the TVP models where rate levels have a bigger (smaller) impact
 when information flows are higher (lower). Like the TVP models, this model also
 nests both the LEVELS model (if a0 = ax = b = 0) and the GARCH model (if
 a3 = 0).

 The final model we examine is an asymmetric extension of the GARCH-X
 model,

 (7) a2 = ao + ax e2_ x + a2rj2_ x + ba2_ x + a3 r]\.

 This generalization of (6) is analagous to the extension from TVP-LEVELS to
 AsymTVP, in that we simply add an asymmetry term to the GARCH-X equation.
 As above, if a2 > 0, then negative shocks have a greater impact on volatility than
 positive shocks. We refer to this model as the AsymG-X model.

 III. Misspecification Tests

 The models we estimate are evaluated with the likelihood ratio statistic and

 the Ljung-Box statistic. In addition, we employ the robust conditional moment

 3This generalization focuses entirely on one-factor models. Our model is a one-factor model
 because only one source of uncertainty appears in the mean equation, and this same source of uncertainty

 drives the GARCH behavior ofthe parameter ipf. We could examine two-factor models as in Longstaff
 and Schwartz (1992) by introducing another source of uncertainty into both the GARCH variance
 process and the mean equation, but our aim is to examine and evaluate different one-factor models.
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 tests of Wooldridge (1990). The conditional moment tests allow us to identify pos?
 sible sources of misspecification in the model, and are robust to our distributional
 assumptions. Since these tests may be unfamiliar, we provide the following brief
 description.

 Conditional moment (CM) tests analyze a model by forming functions ofthe
 data and model parameters called generalized residuals (v,), which are constructed
 to have zero conditional expectation if the model is correctly specified. The test
 investigates whether the generalized residuals have zero conditional expectation
 by testing whether they are uncorrelated with selected elements ofthe information

 set. These elements ofthe information set, or, as they are referred to in this context,

 misspecification indicators (Aj;,_i), are chosen by considering dimensions along
 which the model is likely to fail. The essence of the CM test is whether the con?
 ditional cross-moments, formed as the product of the misspecification indicators
 and the model's generalized residuals (m? = v,A/,_i), are far enough from zero
 to warrant rejection of the model. CM tests are especially useful because they
 can be tailored to evaluate specific forms of misspecification simply by selecting
 appropriate misspecification indicators and generalized residuals.

 The CM test is constructed from a series of two auxiliary regressions after
 the null model has been estimated. First, the misspecification indicator, A,?,_i, is
 regressed on the expected gradient ofthe generalized residual, E,_i (Vv,). If there
 are k parameters in the null model, the gradient Vv, will be a k x 1 vector, which can

 be calculated by either numerically or analytically differentiating the generalized
 residual with respect to the null model's k parameters. The expectation is taken
 conditional on information available at time t ? 1. For most applications (including
 ours), this conditional expectation is computed analytically. The residuals from
 this first stage regression are

 it = \i,t-\ -^E,_i(Vv,),

 where 6 is a k x 1 vector of regression coefficients. In the second stage regression,
 a vector of ones is regressed on the product of the first stage residuals zt and
 the generalized residual v,. Denoting the sample size as T and the coefficient of
 determination from the second stage regression as R2, Wooldridge (1990) shows
 that TR2 is asymptotically distributed xf under the null hypothesis that the indicator
 is not correlated with the generalized residual. In the case of multiple indicators,
 the first step is to run a multivariate regression of the indicators on the expected
 value of the gradient, and the second step is unchanged. TR2 from this second

 stage regression is distributed x%> where p is the number of indicator variables
 being tested.

 A simple example makes the nature of the test clear. Consider testing the
 standard OLS simple regression model, v, = pXt+it, for misspecification. Here, we
 can use e, = yt ? pXt as the generalized residual since its conditional expectation is
 zero. Denoting 3,_ i as the time t? 1 information set, the CM test provides evidence
 on whether E(e,A,_i) = 0, where A,_i is any variable (or function of variables and
 parameters) contained in Xt U S,_ i. In this example, one choice of misspecification
 indicator might be A,_i = e,_i, in which case, the CM test provides evidence on
 whether E(e,e,_i) = 0, i.e., evidence on first order serial correlation. In this
 example,. e,_i is the indicator and m, = e,e,_i is the conditional moment being
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 tested. The gradient of the generalized residual is Ve, = V(y, ? (3Xt) = ?Xt,
 so the expected gradient is E,_i(Ve,) = ?Xt. As discussed above, the CM test is
 constructed from two auxiliary regressions. The first regresses the misspecification
 indicators (in this illustration, the lagged OLS residuals e,_i) on the expected
 gradient of the generalized residuals (in this case, the negative of the independent
 variable, ?Xt). The residuals from this regression are ?,. The second regresses
 a vector of ones on ?,e, (product of the first stage residuals and the generalized
 residual). The TR2 from the second stage regression is the test statistic. This
 example makes clear the intuition behind the CM test: the first step purges from
 the misspecification indicator all the information already in the model. The second
 step tests whether the unexplained part of the indicator is correlated with the
 generalized residual.

 Turning now to interest rate volatility models, if the variance equation is
 correctly specified, we would expect

 E(e2-<72|3,_0 = 0.
 Hence, v, = e2 ? a2 is a reasonable candidate for a generalized residual to test
 whether the variance equation is correctly specified. Any element of 3,_i is
 a valid candidate for a misspecification indicator. The possibilities for indicators
 are numerous. Selecting indicators carefully should provide important information
 about the deficiencies of the interest rate models we examine.

 We propose several indicators to test for likely sources of misspecification in
 the variance equation. The first indicator is the lagged interest rate level,

 Au-i = rt-\.

 The moment for this test is m\t = v,Ai,,_i, and if the variance equation is correctly
 specified, E(m\t) = 0. On the other hand, if the variance model under predicts
 (over predicts) variance when interest rates are high, this moment will have an
 expected value greater than (less than) zero. Hence, this moment should identify
 variance models that misspecify the sensitivity of volatility to interest rate levels.

 The second indicator we consider is

 A2,,_i = /(e,_i <0)e,_!,

 where /(?) equals one when the condition in parentheses is true and equals zero
 otherwise. If our variance equation is correctly specified, then the associated
 moment, m2t = vt\2ft-\, should have expected value zero. But if our model under
 predicts (over predicts) variance after negative shocks, m2t should have a positive
 (negative) expected value. Hence, this moment tests for the appropriateness of
 asymmetric variance models, such as equation (5) above.

 Our third set of misspecification indicators focuses on serial correlation in
 standardized squared residuals,

 ^3,t-l = V,_i,
 ^4,t-l = Vt-2,
 A5,,-l = V,_3>

 ^6,t-l = V,_4,
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 where v,_# are lagged values ofthe generalized residuals. The associated moments
 have expected value zero if our model adequately represents the dynamics in the
 variances. Essentially, these test for remaining GARCH effects.4

 The final set of misspecification indicators we examine tests for a structural
 break in the variance process caused by the change in the Fed's operating proce?
 dures between October 1979 and October 1982. The misspecification indicator
 we propose is

 A7f,-i = /(Oct 1979 < t < Oct 1982).

 Again, if our model under predicts (over predicts) variances during the Fed's
 experiment, then the associated moment should have a positive (negative) expected
 value.

 To summarize, we offer seven misspecification indicators, broken down into
 four sets. The first indicator tests whether the model misrepresents the dependence
 of variance on levels; we call this test a "rate level" test. The second tests for
 asymmetric variance models; we call this an "asymmetry" test. The third set
 tests for misspecified dynamics in the estimated variance process; we call these
 "GARCH" tests. The final set tests for a structural break during the Fed's monetary

 targeting experiment; we call these "structural break" tests.

 IV. The Data

 We analyze two data sets in this study. The first consists of 909 weekly
 observations on 13-week Treasury bill yields, from February 9, 1973, to July 6,
 1990. These data were obtained from Data Resources, Inc.5 The second data set

 consists of 407 monthly observations ofthe total return on 30-day Treasury bills,
 from January 1960 to December 1993. These data come from Ibbotson Associates'
 Stocks, Bonds, Bills and Inflation Yearbook. For expositional purposes, we refer
 to the weekly 13-week yield data as TB13WK, and the monthly 30-day rates as
 TB30DY. Portions of this study were replicated on other data sets (monthly three-
 month Treasury bill yields and weekly seven-day Eurodollar rates) and the results
 are qualitatively similar. Following the literature, we focus on nominal rates to
 avoid the serious data problems that would be created by attempting to define real
 rates. Also, throughout the ensuing analysis on TB13WK, we use a crash dummy
 variable that takes the value one during the week of the 1987 market crash and
 zero otherwise. We include the dummy because interest rates fell by more than
 11 standard deviations over the week of the crash, and none of the models we
 evaluate is designed to capture the effects of large "one-time" exogenous shocks.6
 The dummy variable is not included in the analysis of TB30DY because these rates
 fell by only three standard deviations over the month of the crash.

 4In the empirical section of this paper, we report only the joint test for whether #13,, #14,, ms,, and
 met all have expected value zero, against the alternative that at least one of them has a nonzero expected
 value.

 5We wish to thank Mark Flannery for making these data available to us.
 6 Much of our ensuing analysis was also conducted without the crash dummy, and the only material

 difference using our proposed class of models was in the estimated degrees of freedom in our conditional
 t-distribution. In contrast, Bliss and Smith (1994) finds that including the crash observation in the
 LEVELS model causes one to overestimate the sensitivity of volatility to levels.
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 Our weekly data have two advantages over our monthly data. First, the
 discrete time approximation to the continuous time model given in (1) should hold
 better with higher frequency data. Second, the increased sample size makes the
 asymptotic x2 statistics of the CM tests more appropriate. However, the monthly
 data have the advantage that 30-day bills are closer to the true short rate that these

 models are designed to analyze. Our conclusions from both data sets are essentially
 identical, suggesting either that changing horizon and/or frequency probably does
 not affect our conclusions, or that the two changes somehow offset each other.

 The 13-week Treasury bill yield over our sample averaged 8.1 percent (an?
 nualized) with a standard deviation of 2.59 percent, while the changes averaged
 0.0022 percent with a standard deviation of 0.351 percent. The highest 13-week
 yield was 16.68 percent on May 22, 1981, and the lowest was 4.25 percent on
 December 17, 1976. The largest one-week increase in the yield was 1.81 percent
 during the week ending May 8, 1981, and the largest one-week decline was 2.17
 percent during the week ending August 20, 1982. The monthly 30-day rates in
 TB30DY averaged 6.01 percent with a standard deviation of 2.80 percent, while
 the changes averaged ?0.003 percent with a standard deviation of 0.91 percent.
 The highest monthly return (annualized) was 16.17 percent during June 1981 and
 the lowest was 1.58 percent during November 1961. The largest one-month in?
 crease was 4.20 percent over December 1980 and the largest one-month decline
 was 5.35 percent over the month of May 1980. The dotted lines in Figures 1 and
 2 graph the changes in interest rates for TB13WK and TB30DY, respectively.

 -1.0

 -1.5

 -2.0

 -2.5

 FIGURE 1

 Weekly 13-Week Treasury Bill Volatility
 February 1973-July 1990

 rate change

 - LEVELS standard deviation

 -TVP-LEVELS standard deviation
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 FIGURE 2

 Monthly 30-Day Treasury Bill Volatility
 January 1960-December 1993
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 V. Empirical Results
 A. Model Estimates

 We estimate our models with maximum likelihood, assuming a conditional
 student's f-distribution where the degrees of freedom, v, are estimated from the
 data. The student's ^-distribution gives our model enough flexibility to capture the
 leptokurtosis in interest rate data. Also, robust conditional moment tests require
 only V^-consistent estimates ofthe model parameters. Maximizing a f-distributed
 likelihood function yields vT-consistent estimates under very weak conditions if
 the mean and variance equations are correctly specified and the true distribution is
 symmetric (Newey and Steigerwald (1994)). We use maximum likelihood instead
 of a distribution-free estimator (such as GMM) for two reasons. First, our simula?

 tions later in the paper require a precise specification ofthe conditional distribution.

 And second, Broze, Scaillet, and Zakoian (1993) prove in their proposition 3.3 that
 the GMM estimator of the LEVELS model is not well behaved if 7 > 1. CKLS
 obtains estimates of 7 that exceed one, so we prefer to avoid GMM estimation.

 Before estimating our flexible functional forms, we estimate and present two
 baseline models against which comparisons can be made: the LEVELS model and
 the GARCH model. These models are useful reference points because both have
 many applications in the literature. For example, the LEVELS-type volatility pro?
 cesses and various special cases of it are used by Vasicek (1977), Dothan (1978),
 Cox, Ingersoll, and Ross (1980), Oldfield and Rogalski (1987), Gibbons and Ra?
 maswamy (1993), and Sanders and Unal (1988), amongmany others. GARCH and
 GARCH-type models are used by Cai (1994), Cecchetti, Cumby, and Figlewski
 (1988), Engle, Ng, and Rothschild (1992), Flannery, Hameed, and Harjes (1992),
 and Hamilton and Susmel (1992), among many others.
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 The LEVELS and GARCH model estimates are presented in the first two
 columns of Tables 1 and 2. Table 1 presents results from TB13WK while Table 2
 presents results from TB30DY. For both data sets, the mean equation parameters
 (a and /?) are similar between the LEVELS and GARCH models. There is no
 evidence of mean reversion in the TB13WK data, and only weak evidence in the
 TB30DY data.7 This result is common to studies of short-term interest rates. The

 mean equation similarities between the LEVELS and GARCH models suggest that
 any differences between these models are caused by how they treat volatility.

 The Ljung-Box Q(et/at) statistics indicate that both models (and all other
 models evaluated in this paper) have significant serial correlation in the residuals.
 There are probably several sources of this misspecification, one of which is that
 our drift term, a + Prt-\, is not the correct arbitrage-free drift (see Heath, Jarrow,

 and Morton (1992)). Therefore, our mean equation is necessarily misspecified.
 We do not use the arbitrage-free drift here because, for the models and frequencies
 we consider, the arbitrage-free drift is small in magnitude relative to the volatility.

 This implies that getting the drift right, while very difficult to do, would have little
 impact on our volatility estimates. Also, had we used the arbitrage-free drift, our
 results would not be directly comparable to CKLS, MR, and the other studies cited
 above that use this approximation.

 As in the MR and CKLS papers, estimates of the LEVELS model show
 relatively high values for 7 of 1.56 in TB13WK and 0.83 in TB30DY8 So, for
 TB13WK, the variance of unexpected interest rate changes is proportional to the
 cube ofthe level of interest rates. High sensitivity is also found in TB30DY. There?
 fore, the LEVELS model implies that as interest rates increase, volatility increases
 dramatically. The GARCH model, on the other hand, does not permit volatility to
 depend on interest rate levels, but instead allows volatility to change as news hits
 the market. So, in this model, there need be no apparent relationship between the
 estimated volatility and the level of the interest rate. In fact, the correlation be?
 tween interest rate levels and GARCH volatility is only 0.608 (0.550) in TB13WK
 (TB30DY), while the correlation between interest rate levels and LEVELS volatil?
 ity is 0.985 (0.948). Notice also that the GARCH model exhibits strong persistence
 in the volatility parameter for both datasets, as a\ + b is approximately one. Thus,
 shocks to the variance persist indefinitely.

 Further useful insights can be gained from Figures 1 and 2, which graph the
 changes in T-bill yields along with the estimated conditional standard deviations
 from the LEVELS model. Figure 1 applies to TB 13WK and Figure 2 to TB30DY.
 The striking observation from these graphs is that in several periods, especially
 1983-1984, the LEVELS model misrepresents realized volatility. See Figure 3 for
 a close-up of this period for TB13WK. Interest rates were relatively high during
 these two years, but the Fed's interest rate targeting policy kept volatility low.
 In contrast, the GARCH model tracks realized volatility much better during this

 7 Mean reversion exists if (3 < 0, so a test for mean reversion is a test of whether (3 = 0 against the
 alternative that (3 < 0. However, under the null hypothesis of no mean reversion, r, has a stochastic
 trend, implying that the usual f-test is inappropriate.

 8This estimate of 7 is sensitive to the time period under consideration. For example, the 7 for
 TB30DY increases to 1.14 when we reduce the time period to June 1964-December 1989, the time
 period considered by CKLS.
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 TABLE 1

 Statistical Models of the Short-Term Interest Rate:
 Weekly 13-Week Treasury Bill Yields, 02/09/73-07/06/90

 Columns 1, 2, 3, and 4 of Panel 1 report the maximum likelihood estimates from the model,

 (D

 (2)

 (3)

 h-h-^  ol + f3rt_i + SDcrash + et,

 et/at \ ^t-^ ~ tu
 c 2 _ 2 Ef-lCf = <rt  *trt-v  rf  a0 + a-| ef_ -, + a2ri?-i + brf-\.

 where rft = min(e^, 0). Standard errors are in parentheses. Columns 5 and 6 replace equations (3)
 above with

 (4)  E,_-,e2 = rf = a0 + a1ef_1 + +a277f_i + a3(rf_-,/10)27 + ba]_

 Panel 2 reports: log-likelihood values (L); Schwarz-Bayes information criterion (SBC); excess kurtosis of
 standardized residuals (?); degrees of freedom implied by the excess kurtosis (vK)\ Ljung-Box tests for
 up to twelfth order serial correlation in the standardized residuals and squared standardized residuals
 (Q(et/at) and Q(e2/<72), respectively); and a set of Wooldridge's (1990) robust conditional moment
 tests as discussed in the text. P-values are in parentheses.
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 TABLE 2

 Statistical Models of the Short-Term Interest Rate:

 Monthly Total Returns on 30-Day Treasury Bills, 01/60-12/93

 where rft = min(ef, 0). Standard errors are in parentheses. Columns 5 and 6 replace equations (3)
 above with

 (4)  E,_-,e2 = rf = a0 + a1e2_1 ++a2r72_1 + a3(r,_-,/10)27 + baf_v

 Panel 2 reports: log-likelihood values (L); Schwarz-Bayes information criterion (SBC); excess kurtosis of
 standardized residuals (?); degrees of freedom implied by the excess kurtosis {vK)\ Ljung-Box tests for
 up to twelfth order serial correlation in the standardized residuals and squared standardized residuals
 (Qiet/a{) and Q(e2/tr2), respectively); and a set of Wooldridge's (1990) robust conditional moment
 tests as discussed in the text. P-values are in parentheses.
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 period. However, while we do not show the GARCH volatility in Figures 1 and 2
 (to keep the graphs readable), the GARCH model under predicts volatility during
 the 1979-1982 monetary targeting experiment by the Fed, when interest rates were
 relatively high.

 iabs(rate change)

 -TVP-LEVELS standard deviation

 ? LEVELS standard deviation

 ? GARCH standard deviation

 Many of these observations and criticisms ofthe LEVELS and GARCH mod?
 els are verified in the test statistics reported in the bottom panels ofthe tables. First,

 the likelihood functions for the GARCH models are higher than for the LEVELS
 models (61.15 vs. -14.92 for TB13WK, and-443.27 vs. -449.67 for TB30DY).
 While this is not a formal test because the models are not nested, it does suggest
 that the GARCH model tracks volatility better than the LEVELS model. A similar
 conclusion is obtained from the Schwarz-Bayes information criterion (SBC). Also,
 both the Ljung-Box and the CM tests9 for remaining GARCH effects find that the
 LEVELS model fails to model adequately the serial correlation in the volatility
 process. This result is not necessarily expected, because the LEVELS variances
 are strongly serially correlated. In fact, the first order serial correlation coefficient
 for the LEVELS variances is 0.981 in TB 13WK and 0.932 in TB30DY. In addition,

 the rate levels test (Ai) indicates that the LEVELS model captures the dependence
 of volatility on levels, though the p-value in TB30DY is only 0.021. In contrast,
 the tests on the GARCH model reveal that it captures serial correlation in volatility

 (the Ljung-Box and CM GARCH tests are both insignificant), but fails to pick up
 the dependence of volatility on rate levels (the CM rate level test statistics are
 strongly significant).

 9When implementing the CM tests, we first divided the generalized residual and the gradient by
 the conditional variance. This transformation does not affect the asymptotic distribution of the tests,
 but has the advantage of making our tests asymptotically equivalent to the more well-known Lagrange
 Multiplier tests in classical circumstances.
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 Our structural break test (A7) reveals that the LEVELS model is misspecified
 during the Fed's monetary targeting experiment between October 1979 and Octo?
 ber 1982. This result differs from CKLS, who found no structural break in their

 model. Our results differ because our test is designed to detect a different kind of
 misspecification than the CKLS test. We examine whether the estimated volatility
 was correct, on average, during the Fed's experiment, while their test examines
 whether the parameters of the model changed. Our conclusions are supported by
 Ball and Torous (1994), who estimate a stochastic switching model and find evi?
 dence of structural breaks in the LEVELS volatility process. The structural break
 test also shows that the GARCH model is misspecified during this period in the
 TB30DY data, but not in the TB 13WK data. Also, as evidenced by the asymmetry
 tests (A2), both these models misspecify the way that volatility responds differ-
 ently to positive shocks than to negative shocks. This suggests that the asymmetric
 models that we introduced above might dominate the symmetric ones.

 Finally, the GARCH model with a conditional f-distribution permits excess
 kurtosis in the data. For example, in TB 13WK, the standardized residuals from the
 GARCH model exhibit excess kurtosis of 4.30. The relationship between excess
 kurtosis and degrees of freedom in a f-distribution is

 6 .

 where k is the excess kurtosis and vK is the degrees of freedom. So if k = 4.30,
 then uK = 5.40. This is only about one half of a standard deviation away from
 our estimated degrees of freedom of 6.01. A similar conclusion can be drawn
 from TB30DY. We take this as informal evidence that the GARCH model with

 conditional t errors adequately captures the leptokurtosis in short-term interest rate
 data.

 Our results suggest that models explicitly incorporating both serial correlation
 in volatility and dependence of volatility on levels should be superior to either of
 the baseline models. Results for the TVP-LEVELS and AsymTVP models are
 presented in the middle two columns of Tables 1 and 2. Consider first the TVP-
 LEVELS model. The estimated volatilities are plotted in Figures 1, 2, and 3.
 These estimated volatilities seem to track realized volatility better than the levels
 model, especially during the 1983-1984 period.

 In the TVP-LEVELS model, we find strong evidence of a variance process
 that differs from both the LEVELS process and the GARCH process. a\ and b
 are jointly significantly different from zero, implying that the volatility parameter
 is time varying. Similarly, 7 is significantly different from zero, implying that
 the variance is an increasing function of levels. In fact, the correlation between
 the predicted variance and the interest rate level is 0.729 in TB13WK and 0.758
 in TB30DY. Also, this model seems to correct many of the misspecifications in
 both the LEVELS and GARCH variance processes. The TVP-LEVELS model
 passes most of our volatility-related specification tests. It captures both the serial
 correlation in volatility and the dependence on levels. In addition, the combined
 use of rate levels and shocks gives a functional form that is flexible enough to
 capture the Fed's structural shift. The estimated degrees of freedom are not statis?
 tically significantly different from those implied by our excess kurtoses measures,
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 suggesting that we have modeled adequately the leptokurtosis in the data sets.
 Finally, SBC comparisons indicate that the TVP-LEVELS model is statistically
 preferable to both the LEVELS and the GARCH models. However, the asymme?
 try test (A2) is strongly significant, suggesting that the TVP-LEVELS model does
 not correctly capture the way that volatility responds differently to positive shocks
 than to negative shocks.

 Notice that a\ has dropped substantially compared to the GARCH model,
 causing a\ + b to drop from about 1 in the GARCH model to about 0.83 in ours.
 We conjecture that, in contrast to the GARCH model, persistence in the volatility
 parameter is finite.10 This suggests that the common finding of integrated GARCH
 in the literature could be due, at least in part, to misspecification of the volatility
 equation by ignoring the dependence on levels. Also, our nonzero estimate for 7
 means that, in contrast to the GARCH model, interest rates in the TVP-LEVELS
 model can never be less than zero (if the data frequency is sufficiently high).
 Finally, and most importantly, the estimated 7 is 0.459 in TB13WK and 0.543
 in TB30DY, which are not significantly different from 0.50. This suggests that
 the "square root" models, where 7 = 0.50, characterize short-term interest rate
 data better than other one-factor models.11 Therefore, square root-type volatility
 processes with time-varying volatility parameters are probably better than high
 7 processes when pricing interest rate derivatives that depend on the volatility
 process.

 As noted above, the TVP-LEVELS model fails the asymmetry test. We there?
 fore estimated the AsymTVP model, and give the results in the fourth column of
 Tables 1 and 2. While the AsymTVP model statistically dominates the TVP-
 LEVELS model (the likelihood ratio tests are 118.44 for TB13WK and 56.12 for
 TB30DY), most of the results discussed above for the TVP-LEVELS are unaf?
 fected. The only notable differences are that the model now passes the asymmetry
 test for both datasets, but fails the Q(e2/cr2) test. Perhaps more important, the es?
 timates of 7 are similar to the TVP-LEVELS estimates. In the TB13WK dataset,
 7 drops slightly to 0.436 and, in the TB30DY dataset, it drops slightly to 0.504.
 Neither of these values are statistically different from 0.50, again pointing to the
 potential practical usefulness ofthe square root-type volatility models.

 Consider the GARCH-X and AsymG-X models.n Estimates for these models
 are given in the final two columns of Tables 1 and 2. Recall that, in contrast to the
 TVP models, the GARCH-X models do not permit sensitivity of volatility to levels
 to depend on information flows. Thus, economieally, the GARCH-X models are
 fundamentally different from the TVP models. However, statistically, for the data
 sets considered here, these models prove to be very similar. For the symmetric
 versions, the TVP models have higher likelihood functions and Schwarz-Bayes
 Criteria while, for the asymmetric versions, the reverse is true. Again, these models

 10We were unable to prove this statement, because volatility persistence in the TVP-LEVELS model
 can no longer be measured by a\ + b. Volatility is now a function of both the volatility parameter,
 ipj, and interest rate levels. Therefore, volatility persistence is a function of both persistence in the
 volatility parameter (as measured by a\ + b) and persistence in interest rate levels.

 1 *For lack of a better term, we use the phrase "square root model" to refer to the 7 = 0.50 models.
 The more common usage ofthe phrase "square root model" would require a\ = b - 0.

 12We divided the rt-\ term in equations (6) and (7) by 10 when estimating the model. Failing to
 do this gave ?3 ? 0.00000000015, which caused estimation problems.
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 are not nested, so these likelihood-based comparisons should be interpreted with
 caution. Also, as for the TVP models, the symmetric GARCH-X model fails the
 asymmetry test (A2), while the AsymG-X model fails the Q(e2/a2) test. However,
 the symmetric GARCH-X model still fails the rate level test (Ai) for TB13WK,
 and the AsymG-X model still fails the asymmetry test (A2) for TB13WK and the
 structural break test (A7) for TB30DY. This suggests that there is still room for
 modeling improvements in the GARCH-X group of models.

 One important difference between the GARCH-X models and the TVP mod?
 els is the estimated sensitivity of volatility to levels. In the TB30DY dataset,
 7 ? 1.4 for the symmetric GARCH-X model and 1.3 for the asymmetric GARCH-
 X model, while in the TB13WK dataset, 7 ? 3.7 for the symmetric GARCH-X
 model and 2.6 for the AsymG-X model. At first glance, this seems like an unrea-
 sonably high sensitivity. But recall that the interest rate in the variance equation
 was divided by 10 in these models. Taking this into account, the levels term in the
 GARCH-X model for TB13WK, for example, can be written as

 0.0045 (!?)"" . %*?&? - i<r?(i**K?).
 So, the low constant term dampens much of the apparent sensitivity. To examine
 the effect of this low constant term, and to directly compare the sensitivities implied

 by the LEVELS, TVP-LEVELS, and GARCH-X models in the TB13WK dataset,
 consider Figure 4. Figure 4 plots volatility as a function of interest rate levels
 for these three models.13 Sensitivity of volatility to levels is measured by the
 slope of these lines. The GARCH-X model is insensitive to rate levels for low
 interest rates, but becomes very sensitive as interest rates increase. In contrast, the

 LEVELS model is very sensitive for all interest rate levels, and the TVP-LEVELS
 model is moderately sensitive for all interest rate levels. Interestingly, the TVP-
 LEVELS and GARCH-X sensitivities are similar for the ranges of interest rates
 experienced over the last 20 years (7 percent to 14 percent). It is only at the
 extremes that these two models have different implications about the sensitivity of
 volatility to levels.

 Longstaff and Schwartz (1992) proposes GARCH-X models in which 7 is
 restricted to be one. Although we do not present the results of this restriction in
 the tables, imposing 7=1 gives models that are statistically only marginally better
 than the GARCH models and clearly inferior to the models considered here. Also,
 these models fail the rate level test (Ai), indicating that 7 = 1 in the GARCH-X
 model does not permit adequate sensitivity of volatility to levels.

 Another model evaluation criterion we use to compare the three classes of
 interest rate models is forecasting power. To evaluate forecasting performance,
 we use the model parameters in the top panel of Tables 1 and 2 to construct a one-

 13For each ofthe lines in Figure 4, we fixed all the terms in the respective volatility equations (except
 the interest rate level) at their sample means, and allowed the interest rate to vary from the sample
 minimum of 4.25 percent to the sample maximum of 16.68 percent. So, for example, the equation
 of the GARCH-X line in Figure 4 is <rt = 0.128 + 0.0045 * (r,_i/10)7479. The equation for the

 TVP-LEVELS line is at = 0.0158 * rfff6.
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 FIGURE 4

 Sensitivity of Volatility to Interest Rates
 Weekly 13-Week Yields

 interest rate level

 step-ahead forecast of volatility, o>, for each observation in our sample.14 Using
 these, we calculate mean squared forecast errors,

 MSFE
 1 T

 c^)2,
 t=i

 where

 c =

 The scale factor ( is necessary because, under the assumed distribution for et,
 E|e, | = (a. Instead of presenting MSFEs, which have very little economic meaning
 by themselves, we present the proportion ofthe variance of absolute residuals that
 can be explained by the models' conditional volatility estimates, denoted R2. This
 is computed from

 MSFE
 Rl = 1

 T

 !?0<l-i^T)2
 and is reported in the final row of Tables 1 and 2. In terms of forecasting power,
 the LEVELS model performs the worst for both datasets, while the new class of
 models we propose performs the best. Within our class, the asymmetric versions
 forecast much better than the symmetric versions.15

 14Note that because the parameters were estimated using the entire dataset, we are not evaluating
 out-of-sample forecasting ability.

 15We could account for the number of parameters in each model by using the "adjusted R2", R =

This content downloaded from 73.92.10.170 on Fri, 18 Aug 2017 14:49:54 UTC
All use subject to http://about.jstor.org/terms



 Brenner, Harjes, and Kroner 103

 B. Tradeoffs between the LEVELS and Unrestricted Models

 When we consider two models where one is a generalization of the other, a
 natural question arises about the benefits of moving to the more general model.
 One self-evident benefit is that estimating a flexible functional form is more likely
 to yield the correct interest rate process. This is particularly important when pric?
 ing long-dated, path-dependent interest rate derivatives, such as index amortizing
 rate (IAR) swaps, CMO swaps, swaptions, mortgages, adjustable rate preferred se?
 curities, and CMOs. The values of these securities are sensitive to small changes in
 short-term interest rate volatility. To illustrate, consider the pricing of IAR swaps.

 These swaps have their notional principal reduced over time according to an amor?
 tization schedule based on the level of a reference interest rate on certain fixed

 dates in the future (typically every three or six months). The value of this swap
 depends on the probability distribution of the reference rate on each reset date. In
 addition, as the amount of principal remaining on any reset date is a function of
 past interest rate levels, IAR swaps are "path-dependent." This path depends on
 the volatility process, further amplifying the importance of accurately modeling
 the temporal behavior of interest rate volatility.

 Clearly, our class of volatility processes will yield different volatility paths
 than, say, a square root process with a constant volatility parameter or the 7 = 1.5
 process of CKLS. To demonstrate that they also generate different probability
 distributions of future interest rate levels, we simulated both the LEVELS model

 and the TVP-LEVELS model 5000 times, using the TB13WK estimation results,
 with July 6, 1990 (the final date in TB 13WK), as the starting date. On this day, the
 13-week T-bill rate was 7.9 percent. To focus on the volatility process, we used
 the mean equation rt ? rt_\ = 0.0022 for all the simulations16 and allowed only
 the volatility process to differ. Figures 5 and 6 graph the 5th, 25th, 50th, 75th, and
 95th percentiles ofthe 5000 simulation paths for each horizon up to 180 weeks, for
 the LEVELS and TVP-LEVELS models, respectively. Two striking differences
 are: i) the narrower confidence intervals from the TVP-LEVELS model; and ii)
 the high skewness from the LEVELS model. The 25th and 75th percentiles are
 not very different, suggesting that the most significant differences between the two
 distributions are in their tails, especially the upper tail.

 For some ofthe securities mentioned above (swaps, mortgages, and CMOs),
 average predicted amortization will be less with the LEVELS model than with the
 TVP-LEVELS model due to the larger upper tail. This results in longer predicted
 lives with the LEVELS model. Thus, the LEVELS model would lead to higher
 predicted cash flows, implying it would overprice these securities relative to the
 TVP models. Similarly, the LEVELS model would overprice adjustable rate pre?
 ferred securities (due to higher average payout) and long-dated call options on
 interest rates (e.g., interest rate caps), while under pricing interest rate floors.

 A potentially important remaining question is which of our new models is
 better for pricing derivatives like those mentioned above. To investigate this ques?
 tion, we performed the above simulation using all four of our new models: TVP-

 1 ? ((T ? \)/{T ? k)){\ ? R2), where k is the number of parameters in the volatility process. However,
 for our models, R ? R2 because the ratio (T ? \)/(T ? k) is close to one.

 16The average weekly change in the interest rate over our sample period was 0.0022.
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 FIGURES

 Confidence Intervals for Simulated Interest Rate from LEVELS Model

 Weekly 13-Week Yields

 horizon

 FIGURE 6

 Confidence Intervals for Simulated Interest Rate from TVP-LEVELS Model

 Weekly 13-Week Yields

 horizon

 LEVELS, AsymTVP, GARCH-X, and AsymG-X. The resulting distributions are
 overlaid on each other in Figure 7. These distributions are very similar, suggesting
 any one of the four proposed models will yield similar derivatives prices. This
 result is somewhat surprising, because it suggests, for example, that correctly mod?
 eling asymmetries will not greatly affect interest rate derivatives prices. It also
 suggests that the GARCH-X and TVP models will yield similar derivatives prices,
 even though these volatility processes are quite different. However, in light of
 Figure 4, we see that this conclusion holds only when the starting interest rate in
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 the simulations is between about 7 percent and 14 percent. Similar simulations
 (not reported in the Figures) using starting values outside of this range resulted
 in substantially different future distributions, with the GARCH-X models having
 wider confidence intervals. Therefore, the choice of model can be crucial during
 times when interest rates are near either historical highs or lows.

 FIGURE 7

 Confidence Intervals for Simulated Interest Rates

 from AH TVP and GARCH-X Models: Weekly 13-Week Yields 16-r

 14

 12

 ? 10 +
 "cd

 Models: TVP-LVLS

 AsymTVP
 GARCH-X

 AsymG-X

 horizon

 Though the benefits of our generalized models are clear, there is a potentially
 significant cost in that no simple analytical solution exists to the pricing of deriva?
 tives from these flexible interest rate processes. However, our empirical volatility
 processes set up naturally for Monte Carlo evaluation. Therefore, their generality
 over the existing models comes at little cost for the valuation of securities that
 already require Monte Carlo evaluation, such as the long-dated, path-dependent
 interest rate derivatives discussed above.

 In summary, our results indicate that allowing volatility to be a function of both
 interest rate levels and shocks to the interest rate market could have a large impact

 on the pricing of long-dated interest rate based derivative securities. However,
 the added flexibility of our models may not be needed for short-lived securities.
 Our results suggest that volatility persists (for short horizons). Therefore, we
 conjecture that one could assume the volatility parameter is constant and calculate
 an implied volatility estimate. According to our results, the appropriate model
 used to extract implied volatilities should assume a square root-type volatility
 process. This implied volatility estimate would be one way to proxy for the average
 forecasted time-varying volatility parameter over the life of the option.

 VI. Conclusions

 In this paper, we look at two commonly used, empirical one-factor interest
 rate models. In the first, volatility is a function only of interest rate levels. We call
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 these LEVELS models. In the second, volatility is a function of information shocks
 to interest rates. These are GARCH models. We present evidence that shows that
 GARCH models rely too heavily on serial correlation in variances and fail to
 capture the relationship between interest rate levels and volatility. On the other
 hand, the LEVELS specification over emphasizes the dependence of volatility on
 interest rate levels and fails to capture the serial correlation in conditional variances.
 Furthermore, the LEVELS model is not robust to the Fed-induced structural break

 or the inclusion ofthe 1987 crash. We propose an alternative class of models that
 captures both the serial correlation in variances and the dependence of variances on
 levels. We use traditional specification tests, robust conditional moment tests and
 tests of forecasting power to demonstrate that our class of models characterizes
 the volatility process better than either the LEVELS or GARCH models. We then
 show that the pricing of fixed income derivatives is sensitive to the volatility model
 used.

 Two important conclusions emerge from this paper. First, the sensitivity of
 interest rate volatility to levels is exaggerated in the literature. We disagree with
 the conclusion of Chan, Karolyi, Longstaff, and Sanders (1992) that, "the relation
 between interest rate volatility and the level of r is the most-important feature of

 any dynamic model ofthe short-term riskless rate" (p. 1217). A comparison ofthe
 models presented in this paper indicates that, while this relationship is important,
 adequately modeling the volatility parameter as a function of unexpected "news"
 is equally important. A second conclusion is that existing theoretical models of
 interest rates are misspecified in the way they model volatility. Fortunately, our
 results suggest a potentially fruitful path by which to improve these models. A new

 generation of theoretical models might seek to account for both the relationship
 between interest rate levels and volatility and the relationship between interest rate

 shocks and volatility.
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